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ABSTRACT 
SEDA (Staged Event-Driven Architecture) is a middleware 
architecture designed to support massive concurrency demands of 
internet services. However, managing the resources manually to 
achieve high performance in such a computing system has proved 
difficult, time-consuming, error-prone and non-QoS-guaranteed. 
In this paper, we propose an adaptive control approach to 
automatic resource management and performance control for 
SEDA-based applications. This approach is based on a 
combination of a load balancing strategy and feedback auto-tune 
stages for global optimal performance. In addition, our control 
algorithms are able to automatically optimize the control 
parameters at runtime. The design has been built into a SEDA-
based web sever and validated by benchmarking this web server. 
The experimental results demonstrate that our auto-tune design is 
able to yield superior adaptation performance for SEDA 
applications in dynamic working environments, achieving desired 
performance targets with simple control algorithms and automatic 
parameter tuning. 

Categories and Subject Descriptors 
D2.9 [Software Engineering]: Management – Model Driven 
Architecture, Software Configuration Management; D4.1 
[Operating Systems]: Process management – threads; I.2.8 
[Artificial Intelligence]: control methods – Control theory; G.4 
[Mathematical Software] 

General Terms 
Algorithms, Management, Performance 

Keywords 
Event-based middleware, Model-driven Performance 
Management, Feedback Control, Self-tuning 

1. INTRODUCTION 
Thread-based concurrency model is a common middleware 
architecture used by server applications. However, this model is 
not good at handling large concurrent loads due to the overheads 
associated with resource contention and threading. It has been 
reported that the server performance would be greatly degraded 

when the threads/loads reach a certain degree [16, 20, 21]. 

Alternative to the thread-concurrent model, Staged Event-Driven 
Architecture (SEDA) is a new middleware architecture to support 
massive concurrency demands [21]. SEDA models applications as 
a series of event-driven stages interconnected with event queues 
and supported by non-blocking I/O [17], avoiding the resource 
contentions and the scalability limits of threads [16]. As 
demonstrated by Welsh etc al. [19, 21], this design can greatly 
benefit the system in massive current loads and service fairness. 
Although SEDA provides such self-tune control techniques as 
heuristic control and admission control in each stage, SEDA 
system performance is still determined by the controlled 
parameter configurations in each stage. When all stages are 
optimally set up, SEDA can perform in the best conditions; but 
managing a multiple-stage SEDA system manually is a very 
complicated and time-consuming job. Although considerable 
work has been done for automatic system resource management 
[3, 4, 5, 6, 7, 8, 10, 11, 19], most of them are based on thread-
based concurrency model and do not support the multi-event-
queue system as a global control strategy.  

In this paper, we propose an adaptive control approach to 
automatic resource management and performance control for 
SEDA-based applications. Under the SEDA framework, we 
exploit global control strategy for load balancing and build each 
stage as a feedback control system composed of an adaptive 
controller and an event-driven thread pool. We also develop 
control algorithms that are able to optimize the control parameters 
at runtime. Based on the theoretical proofs and experimental 
results, we argue that our design can not only greatly enhance 
overall performance of the SEDA application to meet the dynamic 
desired demands by adaptively adjusting the resources, but it can 
also reduce a lot of manual work in system configuration.  

The remainder of the paper is organized as follows.  Section 2 
describes the background of SEDA, especially its performance 
management. Section 3 presents our autonomous control system 
design for SEDA and exercises our design with three classical 
control algorithms. Section 4 shows the experimental results of 
benchmarking our design in a SEDA-based web server. We 
discuss the related work in Section 5 and give conclusions in 
Section 6. 

2.  STAGED EVENT-DRIVEN 
ARCHITECTURE  
2.1 Overview 
SEDA innovates from the traditional event-driven design patterns 
[21]. SEDA partitions a complex business logic into a set of 
simple basic tasks in order. Each task is processed by a sequence 
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of stages separated by event queues. By means of non-blocking 
I/O, SEDA applications overcome the weaknesses of previous 
event-driven designs based on blocking I/O operations and thus 
are able to efficiently support high concurrent loads with less 
resources and contentions [1, 17, 20].   

In a SEDA-based system, each stage consists of an event handler, 
an event queue, and a thread pool.  Threads within a stage operate 
by pulling a number of events off the event queue and invoking 
the event handler. The event handler then processes the events and 
dispatches the events by enqueueing them in the event queue of 
the next stage.  

The explicit event-queues between stages act as a mechanism for 
controlling the flow of requests in the whole system. Each stage 
therefore is isolated from each other and is responsible only for 
processing a subset of requests to avoid holding resources by 
single request/thread for too long. [18, 21] 

2.2 Performance Management  
The performance of each stage in the original SEDA design is 
subject to its resource control based on the heuristic control 
algorithm. The controller consists of a thread pool controller and 
batching controller. Thread pool controller is used to adjust the 
number of the threads in the stage by monitoring the incoming 
event-queue length, and the batching controller is designed to tune 
the batching factor by the performance (throughput) feedback. 
Whenever the number of events in the incoming queue is over the 
threshold, the thread pool controller will add a specific number of 
threads in the stage thread pool; similarly, when the throughput 
degrades to the value that is less than the recent running average, 
the batching control mechanism will increase the batching factor 
in the event handler.   

The existing SEDA performance management has a simple design 
and potentials to handle dynamic loads. However, how to 
configure it to generate the desired performance requires 
administers to correctly set multiple relevant parameters such as 
threshold, thread pool size for multiple stages. It is a very time 
consuming and tedious manual operation. In addition, this 
configuration is not based on any mathematical relationships 
between the controlled parameters and the target performance. An 
‘optimal’ configuration usually depends on an experienced 
administrator’s good guess. Therefore, parameter configuration 
can easily result in over utilizing resources or under utilizing 
available resources. Moreover, whether to add or to remove 
threads, and the number of threads allowed to be changed in every 
sampling period in SEDA are statically controlled by the 
admission control mechanism according to the fixed policies, 
which may be not suitable in a dynamic environment. 

3. AUTOMATIC PERFORMANCE 
CONTROL FOR SEDA 
3.1 System Modeling 
Generally, computing system performance can be measured with 
a variety of metrics. In this paper, we take throughput (i.e. 
expected workload) as the performance target. Since many other 
performance metrics such as resource utilization and response 
time can be calculated from system workload [9], if our design is 
able to control the workload to meet the desired target, it means 
that our approach also can be extended for other performance 
requirements. 

In SEDA, a client request is processed along a staged pipeline. 
When there is a bottleneck stage in the process flow, the overall 
system performance would be limited. Picture a scenario where 
one stage has heavy database (DB) reads, but all others are 
essentially main memory manipulation. If the stage to process DB 
reads cannot improve its workload, the system final throughput 
might not be enhanced even though other tasks are isolated from 
DB reads by using different thread queues in SEDA. It implies 
that if loading cannot be balanced in stages, when other stages 
support higher workload than the bottleneck stage, it cannot help 
in improving system performance, but wastes system resources. 
Balancing workload in stages located in the same pipeline thus is 
very important for enhancing the whole system performances. 

Based on the SEDA design pattern and the above analysis, our 
adaptive performance management in this paper is designed as the 
combination of load balance and self-tune stage models. The load 
balance model provides a framework to globally set up the desired 
workload on every stage as Figure 1 illustrated.  Each stage model 
is a feedback self control system using adaptive control 
techniques to adjust stage resources to support the expected stage 
performance. 

 
Figure 1. Global Control Framework 

Since system throughput is chosen as the performance metrics in 
the current design, the principle of making the setting in the global 
control model is that the workload on every stage placed in serial 
is expected to be the same, i.e. the maximum workload that the 
system expects to support, for load balance, and the stages 
working in parallel should share the workload in a specified 
proportion. For example, when the SEDA application is structured 
as Figure 1, the desired workloads for each stage should be 

configured to hold the relationship of  
~ ~ ~ ~

A B C DT T T T= + = , 

where
~
T represents the reference workload for each corresponding 

stage. After getting the reference control signal from global 
configuration, each stage can run the auto tune processes to self 
optimize the stage resources, meeting the need of its performance 
target. Each stage in Figure 1 can be modeled in detail as shown 
in Figure 2. 

 
Figure 2. Self-Tune Stage  



The stage control model consists of admission control and 
feedback control. Admission control is to monitor the number of 
requests that entered the event-queue in the last sampling period 
and to decide if the feedback controller should be enabled. 
Generally, this mechanism is specifically for the situation that the 
desired workload is much higher than the actual number of 
requests. Feedback control here is developed to auto tune the 
manipulated parameters to the best values by using automatic 
control theorems so that the controlled system can generate 
expected output.  

Separated by event queues, in some degree, each stage in SEDA 
can be viewed as an independent thread-pool based system. Like 
other thread-based systems, the number of threads in the pool 
determines the workload of the stage. A higher value of threads 
size allows the system to process more requests concurrently, 
increasing the system capacity. So stage thread pool is chosen as 
the controlled target system in the feedback control system.  

Although the relationship between throughput and thread pool 
size is in fact nonlinear and stochastic, we found that it can be 
regarded as linear before the number of threads reaches a certain 
degree. Therefore, by using least mean square (LMS) 
identification techniques, throughput-thread relationship can be 
modeled as a first-order ARX model [12, 13] as Equation 1. 

( ) * ( 1) * ( )y k A y k B u k= − +  (1) 

where ( )y k  and ( )u k denote the estimated throughput and 
change of threads number in the stage at time k respectively; 
A and B are scalars obtained by system identification. This 

equation indicates that whenever the number of threads is varied, 
the output would be changed immediately in the same sample 
time without any delays, and the output is linear related to the 
number of the threads changing in this sampling period. In Figure 
3, we show the comparison of the actual and estimated throughput 
of a stage in a SEDA based web server  (Haboob [21]). 

 
Figure 3. Estimated Output and Actual Output 

Despite a difference between the actual and the model output, the 
comparison demonstrates that modeling the system in this way is 
correct and the model is sufficient to be used in the following 
system control.  

3.2 Adaptive Control System Design 
Base of the above analysis and modeling, we design the adaptive 
control system as follows. Since our control is discrete, we apply 
the standard z-transformation [15] on the system equation (EQ1) 
and we get: 

B Z
Z A−

 (2)

The stage control model in Figure 2 thus can be simplified to the 
control flowchart shown in Figure 4. 

 
Figure 4. the Stage Control Model 

In Figure 4, ( )C Z and ( )G Z  represent the stage controller and 

stage model respectively.  ( )u k is the control input to the plant, 
which is generated by the controller through computing the error 
lying between the reference and the last system output ( 1)y k − , 
in the current design, it physically means the change of threads 
number in the stage.  The unit delay in the feedback path is to 
avoid the algebraic loop and to keep the information of the last 
output for the control function. When ( ) 0u k > , it means it will 

add threads in the stage; otherwise, when ( ) 0u k < , it is to say 

( )u k  threads are retired. Whenever the stage gets this control 
input, the performance output is immediately generated.  

The stage control model can be drawn as a system transfer 
function as below: 

1

( ) ( )( )
1 ( ) ( )sys

C z G zf z
C z G z z −=

+
 (3)

3.2.1 Proportional Control 
We firstly apply the P (Proportional) control on the stage 
controller. We use pK  to represent the proportional constant in 
the controller, and the stage model described by EQ 3 can be 
transformed to be: 

Applying inverse Z-Transformation on EQ 4, we achieve the form 
of the transfer function in time domain, shown as EQ 5,  

 ( ) ( ) [ ]n
p pX n K B A K B u n= −  (5) 

where ( )X n represents the change of the output at time n , and 

the ( )u n  represents the input signal to the system at this sample 

time. In the design here, ( )u n specifically denote the sampled 

reference input ( )r k , which is the input to the control system. 

According to the system stability requirements, the poles of the 
closed loop system transfer function should be located in the unit 
circle. Therefore, a constraint on the choice of the parameter 
values in EQ 4 is as below: 

1pA K B− <  (6) 

1
1

( )
1 ( )1

p p
sy s

p
p

B ZK K BZ Af z
B Z A K B ZK Z

Z A

−
−

−= =
− −+

−

 
 (4) 



Thus, from EQ 5 and EQ 6, we know that the system final steady 
output would be the maximum system output, i.e.: 

0 0

( ) ( )
1

pn
p p

n n p

K B
X n K B A K B

A K B

∞ ∞

= =

= − =
− +∑ ∑

 
(7) 

Whenever the EQ7 equals to the desired output, we can draw the 
value of pK , which is definitely the optimal value of pK . 
Therefore, we can follow the processes (EQ8~EQ10) as below to 
obtain this optimal values. 

Firstly, let:  

1 1pA K B− + =  (8) 

then we can get:          

p
AK
B

=
 

(9) 

Since the system (Figure 3) final steady output is equal to A , we 
can achieve the desired output by developing a simply 
transformation equation as follows: 

( ) ( )y k Ar kα=  (10) 

And let     

1
A

α =
 

(11) 

The system model described in Figure 4 thus can be designed as 
shown in Figure 5 when it is working with proportional controller.  

 
Figure 5. P- Control Based Pre-Compensator Control Model 

3.2.2 PI / PD Control 
PI (proportional-integral) and PD (proportional-derivative) are 
two well-known control techniques in classical control theory, 
which add integral and derivative components respectively on the 
proportional control [2, 10].  

There have been a lot of discussions on how to get the best values 
of these controlled parameters to achieve the desired output. 
However, if the system is discrete and the zeros in the transfer 
function affect a lot on the system performance, there is little 
previous work to deal with this problem [10]. In this section, we 
propose a new approach to deriving the optimal parameter values.  

An ideal controller usually enables the controlled system to 
perform as expected. In general, the overshoot and settling time 
are the two most important performance metrics for automatic 
control systems. In the following, we take these two parameters as 
our control targets to develop our PI/PD control algorithms.  

We first present the design of PI control system. Similar to the 
above P control algorithm, from EQ 3, the PI control system 
model can be depicted in the equation as EQ 12 

2

2

( )
( )

( 1 )
p i p

P I
p i p

B K K Z B K Z
f z

Z A K B K B Z A K B
+ −

=
− + − − + −  

(12) 

where pK and iK represent the proportional and integral constants. 

Converting this model from Z-plane to the time domain, we have 
EQ 13 that shows the change of the system performance output 

( )PIX n resulted by the current input signal. 

1( ) sin( ) sin( )
( ) [ ]

sin

n n
p i p

PI

B K K r n BK r n
X n u n

r
θ θ θ

θ

++ + −
=

 
(13) 

where r and θ  mean the distance and angle of the pole in the z-
plane respectively. Because of the stability and performance 
requirements, we can demand: 

0 1r< < and [0, ]
2
πθ ∈  (8) 

Taking the desired settling time sK into account, we can achieve 
the range of r by solving the equations of EQ 15 for PI. 

2sin( ) sin( )
[1 2 cos ] (1 ) 0

sin( ) sin( )
s s

s s

K K
r A r A

K K
θ θ θ θ

θ
θ θ

+ +
− + + − =

 
(15) 

Because the system output equals to 

0
( ) ( )

k

n
y n X n

=

= ∑
 

(16) 

with the r obtained from EQ 15, the desired settling time and the 
overshoot, we then can get the proper range of θ  by calculating 
EQ 16, and finally we can use EQ17 to obtain pK and iK . 

2

p
A rK

B
−

=
 

2 1 2 co s
i

r rK
B

θ+ −
=

 

 

(17) 

with this algorithm, the pK and iK  are a set of combined values 
that meet the control demands. Any pair applied in the adaptive 
controller can achieve the desired performance. 

PD controller development in our algorithm uses the same design 
process as the above PI. Only because of the difference lying on 
the system transfer function, the equations related the system 
model (EQ 12, 13, 15 and 17) should be replaced by PD equations 
(EQ 18, 19, 20 and 21) respectively as below 

2

2

( )
( )

( )
p d d

P D
p d d

B K K Z B K Z
f z

Z A K B K B Z K B
+ −

=
− − − −  

(18) 

where pK and dK represent the proportional and derivative 
constant respectively. The time domain behavior then is described 
as EQ 19: 



1( ) sin( ) sin( )
( ) [ ]

sin

n n
p d d

PD

B K K r n BK r n
X n u n

r
θ θ θ

θ

++ + −
=

 (19)

EQ 15 of PI correspondingly is changed into EQ 18 for PD 

sin( )
2cos sin( ) sin( )

s

s

A K
r

K K
θ θ

θ θ θ θ
+

=
+ −  

(20)

Finally, we can use EQ 21 to replace the EQ 17 of PI to achieve 
the optimal parameters for PD control to meet the system 
performance requirements. 

2

D
rK
B

= −
 

2 cos
p D

A rK K
B

θ−
= −

 

 

(21) 

4 TESTING AND ANALYSIS 
We validate our design by implementing it with the above three 
control strategies into a SEDA-based web server [21] and evaluate 
our approaches by benchmarking the web server. The testbed 
consists of one server machine (2.8 GHz Pentium 4 systems with 
1.5 GB of RAM) and a client machine (2.0 GHz Pentium 4 
systems with 512MB of RAM). The SEDA web server is 
developed with SUN JDK 1.5 as the JAVA platform1 running 
Linux kernel v2.6. The client is running synthetic workload 
generator based on the SPECweb 99 testing suite [21, 22]. .  

Figure 6 demonstrates the performance results of the tests. Here, 
we take the same performance tests on each control strategy. 
Without human intervention, each controller adaptively tunes the 
parameters to the values which achieve the desired throughput 
changed at runtime. As the figure shows, our control design is 
able to efficiently yield the desired output for SEDA applications 
under dynamic loading environment and its behavior is similar to 
the above theoretical arguments in the experiment. Despite some 
oscillations in the behavior, the controller is very effective at 
keeping the performance near the target. The oscillation here 
might be resulted by Java’s garbage collection. 

 
Figure 6. the Performance on SEDA-based Web Server 

                                                                 
1 We used SUN’s NIO  ( [1] [14] ) to implement non-blocking I/O 

Among these four control approaches, the heuristic controller 
used in original SEDA shows the slowest adaptation rate, and the 
convergent time is strongly affected by the change of the 
reference signals. In theory, PI control is a sound way in 
improving the system performance by removing the steady-state 
error. However, in this case, the controlled system mathematical 
model limits the positions of the zeros and poles in the control 
function and thus shrinks the scope of and for selections. In terms 
of the model constraints, we therefore can obtain the minimum 
overshoot at 30% in this experiment as shown in Figure 6. With 
regards to the PD control, it demonstrates a promising 
performance in this test with greater errors shown in Figure 6. 
Contrasting to the above control approaches, P control exhibits the 
best performance. It not only has the fastest adaptation rate and 
the least errors, the design process of P control is also the simplest. 
Moreover, the performance of P control is independent to the 
reference signals. In general, steady-state error is viewed as a 
significant weakness existing in P control. In this research, we 
apply both mathematical proof and experiment results to 
demonstrate that our design is good at remedying this problem.  

Although in other working environments, PI and PD controller 
may perform better than these tests, however, either PI or PD 
design process is much more complicated than P control and the 
steady-state errors and convergent rate achieved by PI/PD cannot 
be better than P. Based on these facts, we argue that proportional 
control could be the best selection for this autonomous control 
system design.  

5 RELATED WORK 
Applying control in autonomous computing has attracted a lot of 
research efforts. The control approaches generally can be 
cataloged into two main streams: one is the admission control 
such as queuing control [3, 19], and the other is the feedback-
based control [4, 5, 8, 10, 11]. Besides the two main streams, 
some other approaches like neural-fuzzy control [6], resource 
containment and service degradation etc [19] also attract some 
attention.  

In general, the admission control is simpler, but has limitations 
like heavy manual costs, slow convergence and fixed policies etc. 
The original SEDA is a typical example of admission control. In 
contrast to the admission control mechanism, our approach shows 
better adaptation performance in a dynamic loading environment, 
and demonstrates that it can reduce manual work in parameters 
setting and tuning for system design and management.  

Feedback-based control approaches exhibit significant advantages 
in high quality self-correcting and self-stabilizing. As a result, 
recently both software industry [4, 5] and academic community [8] 
put a lot of efforts in this area. In [8], Lu and Abdelzaher used PI 
control to adaptively adjust the thread pool size and demonstrated 
that feedback control is a useful set of tools for managing 
resources utilization and QoS. In [4], based on the auto-tune agent 
design, IBM took a further step by drawing another argument that 
LQR can perform very well for MIMO systems. Our design is 
also a kind of the autonomous computing system in this catalog. 
Compared with the previous work, our model exhibits the 
following advantages. First, our design is a global control strategy, 
rather than a single thread pool model-based control approach. 
Based on the SEDA pattern, every stage in SEDA works as a 
thread-based concurrency model. On some degrees, the single 
thread pool model like Apache can be regarded as a special case 



of the SEDA architecture that processes all requests in one stage. 
This implies that our approach is also available to fully support 
the thread pool models if required. Second, we take the service 
rate as the performance metric, which gives our control approach 
potential to improve other performances. In addition, we exploited 
the classical control modules (P, PI, PD) in our auto-tune design. 
Compared with other complicated adaptive controls on 
autonomous computing, our approach is simple and able to offer 
an alternative way to efficiently self-tune the system working in 
dynamic workload environments. 

As a note, our design currently focuses on web servers running in 
single machine. However, our design and approach can be 
potentially used to support multiple machines for a complicated 
distributed system.  

6 CONCLUSIONS 
In this paper, we presented and evaluated an auto tune design for 
SEDA-based application performance management. Our 
contributions include a design of adaptive control model based on 
feedback control, as well as developing a practical approach to 
optimize the control parameters. A SEDA-based web server was 
used to validate our design. Three well-known control models (P, 
PI and PD) were evaluated using the SPEC web benchmark 
against the web servier. The experimental results show that our 
auto-performance controller can effectively optimize the resources 
in SEDA-based applications and significantly reduce manual 
configurations. Our work demonstrates that, instead of applying 
complicated control theory and algorithms, P control based pre-
compensation model is good enough to control multiple-stage 
software systems.This makes it feasible to build our approach into 
SEDA middleware and apply it for a large range of applications. 
In the future, more complicated SEDA-based applications will be 
used to further improve and extend our approach. 

7 REFERENCES 
[1] Beltran V., Carrera D., et al.: Evaluation the scalability of 

java event-driven web servers. Proc. of International 
Conference on Parallel Processing (ICPP'04), IEEE. (2004) 

[2] Benjamin C. Kuo and Golnaraghi F.:  Automatic Control 
Systems (8th edition), Wiley, ISBN: 0471134767. (2002) 

[3] Chen H. and Mohapatra P.: Session-based overload control 
in QoS-aware Webservers. Proc. of IEEE INFOCOM2002, 
pages 516-524. (2002)  

[4] Diao Y., Hellerstein J.L., et al.: Managing web server 
performance with autotune agents. IBM System journal Vol 
42, No 1, pages 136-149. (2003)  

[5] Diao Y., Gandhi N., et al.: Using MIMO feedback control to 
enforce policies for interrelated metrics with application to 
the Apache Web server. Proc. of the Network Operations and 
Management Symposium, Florence, Italy.(2002) 

[6] Diao Y., Hellerstein J.L., et al.: Optimizing quality of service 
using fuzzy control. Proc. of the 13th IFIP/IEEE 
International Workshop on Distributed Systems: Operations 
and Management. Springer-Verlag, pages 42--53. (2002)  

[7] Liu X., Lui Sha, et al.: Online Response Time Optimization 
of Apache Web Server. Proc. of the 11th International 

Workshop on Quality of Service (IWQoS 2003), pages 461-
478. (2003)  

[8] Lu C., Abdelzaher T.F., et al.: A feedback control 
architecture and design methodology for service delay 
guarantees in web servers. Technical Report CS-2001-06, 
University of Virginia, Department of Computer Science. 
(2001) 

[9] Menasce D.A. and F.Almeida V.A.: Capacity Planning for 
Web Services Metrics, Models, and Methods, Prentice Hall 
PTR Upper Saddle River, N.J.07458, ISBN: 0-13-065903-7. 
(2002) 

[10] Hellerstein J.L., Diao Y., et al.: IBM Research Report: 
applying control theory to computing systems. Proc. of 
Computer Science RC23459 (W0412-008). (2004) 

[11] Hellerstein J.L., Diao Y., et al.: Feedback control of 
computing systems, IEEE Press Wiley-Interscience, ISBN:0-
471-26637-X. (2004) 

[12] Ljung, L.: System identification: theory for the user 2nd ed. 
Upper Saddle River, N.J: Prentice Hall, ISBN: 0136566952. 
(1999) 

[13] the MathWorks Inc: System Identification Toolbox 

[14] SUN Microsystems INC. New I/O APIs. 
http://java.sun.com/j2se/1.4.2/docs/guide/nio. (2002) 

[15] Oppenheim A.V., Schafer R.W., et al.: Discrete-time signal 
processing, Prentice Hall Signal Processing Series, ISBN: 
0137549202. (1999). 

[16] Vivek S. Pai, Peter Druschel, et al. Flash: An efficient and 
portable Web server. Proc. of the USENIX 1999 Annual 
Technical Conference. (1999). 

[17] Welsh M.: NBIO: Nonblocking I/O for Java 
http://www.eecs.harvard.edu/~mdw/proj/java-nbio/ 

[18]  Welsh M.: An architecture for highly concurrent, well-
conditioned internet services (Thesis). Computer Science, 
University of California at Berkeley. (2002) 

[19] Welsh M. and Culler D.: Adaptive Overload Control for 
Busy Internet Servers. Proc. of the Fifth USENIX 
Symposium on Internet Technologies and Systems (2003) 

[20] Welsh M. and Culler D.: Virtualization considered harmful: 
OS design directions for well-conditioned Services. Proc. of 
the 8th Workshop on Hot Topics in Operating Systems 
(HotOS VIII). (2001) 

[21] Welsh M., Culler D., et al.: SEDA:An architecture for well-
conditioned scalable internet services. Proc. of the 18th ACM 
Symposium on Operating Systems Principles, anff, Canada. 
(2001) 

[22] SPECweb99 Benchmark, Copyright © 1995 - 2006 Standard 
Performance Evaluation Corporation 
http://www.spec.org/web99/ 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




